Biogeography-based Optimization for Transmission Network Planning Problem Considering Distributed Generation Impacts

N. S. Hosny¹, H. K. M. Youssef²

¹PHI for engineering and technology, 6 October, Giza, Egypt
²Electric Power and Machines Dept., Faculty of Eng., Cairo University, Giza, Egypt
¹nesreen.samir@gmail.com; ²hosamkm@yahoo.com

Abstract

Transmission system is one of the major components in the electric power industry. A novel approach, proposed using biogeography-based optimization (BBO) for the solution to Transmission-expansion planning (TEP) long range problem, employs a constrained BBO algorithm where network stability constraints as lower and upper limits of bus voltage magnitudes and swing angles are included, as well as the AC load flow equations. The cost function is formulated including both fixed and variable costs of planned transmission lines, in addition to energy losses cost. The function is then minimized subject to these constraints. In addition, the proposed method will be applied to study the impacts of distributed generation (DG) on transmission expansion planning. Theoretical details, mathematical model, and the verification of the approach using IEEE 6-BUS and modified 14-BUS test systems are given in the paper.

Keywords

Transmission Expansion Planning; Biogeography-based Optimization; Heuristic Optimization; Distributed Generation

Introduction

TEP is a mathematical optimization challenge. The complication arises from the large number of variables involved in the process. TEP planners formulate their objective functions and the corresponding constraints to account for the cost of investment and/or power loss. In course of planning a new transmission system, or a system expansion, it is important to think carefully in all the aspects, which can imply in a better performance as well as in lower cost. The main objective of the TEP problem is to determine the optimal expansion plan of the electrical system. The planning should specify the circuits (transmission lines or transformers) that have to be built to guarantee adequate operation for a specified planning horizon (Latorre, 1993; Latorre et al., 1991; Dodu and Merlin, 1981; Bertoldi and Cicora, 1984). The data available is base-year topology, candidate circuits, forecast generation and demand of the planning horizon, investment constraints, etc. The planning specifies the location, capacity and the time when the circuits should be installed.

According to the procedure followed to obtain the expansion plan, the synthesis planning models can be classified into two types: heuristic (Fischl and Puntel, 1972; Ekwue and Cory, 1984; Monticelli et al., 1982; Latorre and Pérez-Arriaga, 1994) and mathematical (Kim et al., 1988; Dusonchet and El-Abiad, 1973; Bahiense et al., 2001; Liu et al., 2000; Latorre et al., 1990; El-Metwaly, 1993; Mahmoud Al-Hamouz and Sadiq Al-Faraj, 2003) optimization. However, there are tools that have characteristics of both types of models, and termed meta-heuristic. Recently, most reported works for solution to TEP problems use the modern meta-heuristic methods such as genetic algorithm (GA) (Da Silva et al., 2000; Escobar et al., 2008; Rahmaniab et al., 2010) and particle swarm optimization (PSO) (Ren et al., 2010; Ren et al., 2005; Verma et al., 2009). A new method developed called BBO (Simon, 2008), is applied to power problems such as optimal power flow problems (Bhattacharya and Chattopadhyay, 2010), and the results was fruitful.

An important issue is the potential large-scale penetration of DG technologies. In recent decades, the large-scale centralized generation model has been criticized for its costs, security vulnerability, and environmental impacts, while DG is now expected to play an increasingly important role in the future provision of electricity supply. However, any large-scale implementation of DG will cause significant changes in the power industry, and also deeply influence the transmission planning process. Therefore,
it is important to investigate the impacts of DG on transmission planning and take into account the uncertainty involving in the planning process.

In the following sections, a novel approach has been proposed using the BBO method for the solution to the TEP optimization problem to obtain minimum cost, with the study on the impacts of DG. Theoretical details and results of the tests are given.

Biogeography-based Optimization

Biogeography, actually a nature way of distributing species, describes how species migrate from one island to another, how new species arise, and how species become extinct. A habitat is any Island (area) that is geographically isolated from other Islands. The more generic term “habitat” in this paper is used rather than term “island”. Geographical areas well suited as residences for biological species are with a high habitat suitability index (HSI). Features that correlate with HSI include factors such as rainfall, diversity of vegetation, diversity of topographic features, land area, and temperature. The variables that characterize habitability are called suitability index variables (SIVs) which can be considered the independent variables of the habitat, and HSI can be executed using these variables. Habitats with a high HSI tend to have a large number of species, while those with a low HSI have a small number of species.

Migration of some species from one habitat to another habitat is known as emigration process. When some species enters one habitat from any other outside habitat is known as immigration process. Habitats with a high HSI have a low species immigration rate because they have been already nearly saturated with species. Therefore, high HSI habitats are more static in their species distribution than low HSI habitats. By the same token, high HSI habitats have a high emigration rate; and the large numbers of species on high HSI habitats. The equation for emigration rate

\[ P_s = \begin{cases} \frac{-(\lambda_s + \mu_k) P_s + P_{s+1} \mu_{s+1}}{\lambda_{s+1}} & s = 0 \\ \frac{-(\lambda_s + \mu_k) P_s + P_{s+1} \mu_{s+1} + P_{s-1} \lambda_{s-1}}{\lambda_{s-1}} & 1 \leq s \leq s_{\text{max}} - 1 \\ \frac{-(\lambda_s + \mu_k) P_s + P_{s-1} \lambda_{s-1}}{\lambda_{s-1}} & s = s_{\text{max}} \end{cases} \]

The equation for immigration rate \((\mu_k)\) and immigration rate \((\lambda_k)\) for \((k)\) number of species is expressed as per following way:

\[ \mu_k = \frac{E_k}{n} \]

\[ \lambda_k = l \left(1 - \frac{k}{n}\right) \]

Where, \((E)\) and \((l)\) are the maximum emigration rate and maximum immigration rate, respectively, \((n)\) is the total number of species in the habitat. For details regarding migration and mutation process refer to Simon, 2008.

Distributed Generation

Distributed Generation is defined as a source of electric energy located very close to the demand.
(Ackerman et al., 2001; Pepermans et al., 2003). Usually, DG investments are not more economic than conventional generation. Nevertheless, important contributions of DG occur when energy transmission and distribution costs are avoided, demand uses it for peak shaving, losses are reduced, network reliability is increased, or when it leads to investment deferral in transmission and distribution systems (Jenkins et al., 2000; Willis and Scott, 2000; Brown, 2001; Grijalva and Visnesky, 2005). DG seems a plausible means to improve the traditional way of driving the expansion of the transmission systems. The fact that DG projects are considered as new decision alternatives within the TEP, involves the incorporation of additional parameters such as investment and production costs of DG technologies, firm power, etc. Based on the typical short lead times of DG projects and their lower irreversibility, the uncertainty present in DG project investment decisions and investment costs can be neglected.

In recent decades, the large-scale centralized generation model has been criticized for its costs, security vulnerability, and environmental impacts, while DG is now expected to play an increasingly important role in the future provision of electricity supply. However, any large-scale implementation of DG will cause significant changes in the power industry, and also deeply influence the transmission planning process. For example, DG can reduce local power demand, and thus it can potentially defer investments in the transmission and distribution sectors. On the other hand, when the penetration of DG in the market reaches a certain level, its suppliers will get involved in the spot market and trade the electricity through the transmission and distribution networks, which may then need to be further expanded. Therefore, it is important to investigate the impacts of DG on transmission planning and take into account the uncertainty involving in the planning process.

**DG Impact on Transmission Planning**

Increasing efforts have been made recently to investigate the impacts of DG on all aspects of the power market. Generally speaking, distributed generation is defined as the presence of generation units that are connected to the power grid either on the customer side or into the distribution network (Carley, 2009). The size of a typical DG system usually ranges from 1 KW to 5 MW, while a large DG system can reach a capacity up to 300 MW (Carley, 2009). DG can be categorized into renewable, such as wind or solar power, and nonrenewable, such as the internal combustion engine (ICE) and micro-turbines. Since the market penetration of DG is still low in most countries, a number of studies (Dondi et al., 2002; Johnston et al., 2005) have been conducted to investigate the barriers to DG penetration and the factors that can contribute to DG deployment. A number of economic analyses (Gulli, 2006; Abu-Sharkh et al., 2006) have also been conducted to study the market performance of DG systems. In addition, since DG is usually connected at the distribution level, extensive research (Haffner et al., 2008) has been implemented to reveal the impacts of DG on distribution network planning. These studies have usually focused on determining the optimal size and location of DG units in the distribution network from the distribution company’s point of view. Some studies (Neto et al., 2006; Zhu et al., 2006) also have been performed to understand the impacts of DG on the system side, such as on reliability, system security, and power quality.

**DG Valuation**

DG units can be valued in two different ways. When the market share of DG is small, a DG unit is usually modelled as a negative load in the distribution network and a distribution company implements it only if its cost is lower than the cost of buying electricity from the market. However, when the market penetration of DG reaches a certain level and the electric utilities implement DGs as standard investments in generation capacity (Carley, 2009), then it will be necessary to get involved in the spot market and sell power through the transmission network. This will possibly require modifications on the current market dispatch mechanism (Ummels et al., 2007).

**Formulation of TEP Problem**

The following model is for long-range transmission planning as it is an AC load flow model to obtain optimal solution that satisfies load demand, both active and reactive power limitations, the system security and operational constraints. Installation, variable, and energy losses costs are included in the cost function in terms of time and both interest and inflation rates. The present worth cost function of the model could be formulated as follows (Youssef, 2000):
Minimize

\[
\text{Cost} = \sum_{i=1}^{N_i} p_i^0 E_i^l + \sum_{i=1}^{N_i} \sum_{j=1}^{N_j} \left( \alpha_{i,j}^k c_{i,j}^k + \beta_{i,j}^k c_{i,j}^k \right)
\]

(6)

Where \(N_p\) is the number of planning time periods, \(P_i^0\) is the total annual power loss in the system during planning time period \(i\), \(E_i^l\) is the present worth value of energy losses cost per unit power over planning time period \(i\), \(N_s\) is the number of available right-of-ways in the system, \(N_p\) is the number of permitted parallel lines in right-of-way \((j)\), \(\alpha_{i,j}^k\) is the present worth value of variable cost of line \((k)\) in right-of-way \((j)\) over planning time period \(i\), \(\alpha_{i,j}^k\) is an integer equal to \(1\) if parallel line \((k)\) of right-of-way \((j)\) is used in planning time period \(i\), and equal to \(0\) if not; \(C_{i,j}^k\) is present worth value of installation cost of line \((k)\) in right-of-way \((j)\) if installed during planning time period \(i\), and \(C_{i,j}^k\) is a function in the time at which planning time period \(i\) starts and the length of its operating time interval, as well as in interest and inflation rates. The above cost function has then to be minimized subject to the system operational and security constraints in (Eqns. 7-11):

\[
P_{mk}^l = \left( V_{mr}^l V_{kr}^l + V_{mi}^l V_{ki}^l \right) C_{mk}^l + \left( V_{mi}^l V_{kr}^l - V_{mr}^l V_{ki}^l \right) B_{mk}^l \leq w_{mk} p_{mk,max};
\]

\[
l = 1, 2, ..., N_i; m = 1, 2, ..., N_p; k = 1, 2, ..., N_b; m \neq k
\]

(7)

\[
V_{k,min} \leq |V_{k,l}| = \sqrt{V_{k,l}^2 + V_{k,l}^2} \leq V_{k,max};
\]

\[
l = 1, 2, ..., N_i; k = 2, 3, ..., N_b
\]

(8)

\[
\delta_{k,min} \leq \delta_{k,l} = \tan^{-1} \left( \frac{V_{k,l}}{V_{k,l}} \right) \leq \delta_{k,max};
\]

\[
l = 1, 2, ..., N_i; k = 2, 3, ..., N_b
\]

(9)

\[
\sum_{k=1}^{N_b} \left( V_{mr}^l V_{kr}^l + V_{mi}^l V_{ki}^l \right) C_{mk}^l + \left( V_{mi}^l V_{kr}^l - V_{mr}^l V_{ki}^l \right) B_{mk}^l \leq p_{mk}^l;
\]

\[
l = 1, 2, ..., N_i; m = 1, 2, ..., N_p
\]

(10)

\[
\sum_{k=1}^{N_b} \left( V_{mr}^l V_{kr}^l + V_{mi}^l V_{ki}^l \right) C_{mk}^l + \left( V_{mi}^l V_{kr}^l - V_{mr}^l V_{ki}^l \right) B_{mk}^l \leq q_{mk}^l;
\]

\[
l = 1, 2, ..., N_i; m = 1, 2, ..., N_p
\]

(11)

Where \(P_{mk}^l\) is the active power flow from bus \((m)\) to bus \((k)\) during planning time period \((l)\), \(w_{mk}\) the weighting factor for active power capacity of the right-of-way connecting bus \((m)\) to bus \((k)\), \(V_{kr}^l\) is the real part of bus \((k)\) voltage during planning time period \((l)\), \(V_{ki}^l\) is the imaginary part of bus \((k)\) voltage during planning time period \((l)\), \(V_{k,\text{min}}\) is the lower limit on bus \((k)\) voltage magnitude, \(V_{k,\text{max}}\) is the upper limit on bus \((k)\) voltage magnitude, \(C_{mk}^l\) is the conductance of element \((m, k)\) in the bus admittance matrix during planning time period \((l)\), \(B_{mk}^l\) is the susceptance of element \((m, k)\) in the bus admittance matrix during planning time period \((l)\), \(P_{mk}^l\) is the net injected active power at bus \((m)\) during planning time period \((l)\), \(Q_{mk}^l\) is the net injected reactive power at bus \((m)\) during planning time period \((l)\), and \(N_b\) is the number of buses in the system. Eqn. 7 introduces a capacity limit on active power flow through each right-of-way in the system which varies with each planning time period according to the planner decision of number of parallel lines to be used in this right-of-way during each period. Based on the planner decisions, the elements of the system bus admittance matrix also vary with planning time periods. In order to minimize the cost function presented by (Eqn. 6), the weighting factor \((w_{mk})\) allows either power capacity reserve \((w_{mk} < 1)\) or overload \((w_{mk} > 1)\) for the right-of-way between buses \((m)\) and \((k)\). (Eqns. 8 and 9) represent the system security constraints in each planning time period. Both real and imaginary parts of the system with different bus voltages, at the different planning time periods, are obtained by solving the ac power flow (Eqns. 10 and 11) iteratively, for example, using Gauss-Seidel method-as solved in this paper.

**Tests and Results**

To prove the validity of the proposed technique, it is applied to the IEEE 6-BUS and modified 14-BUS test systems.

**Testing the IEEE 6-Bus Test System**

The IEEE 6-BUS test system is widely used in literature (Youssef and Hackam, 1989; GARVER, 1970; Gallego et al., 1998; El-Metwaly, 1993; Jingdong and Guoqing, 1997). Fig. 1 shows the initial configuration of the system. To check the capability of the model of handling the system security constraints, an upper and lower limit of ±30° are imposed on the swing angles of all buses, and an upper limit of 1.1 p.u and a lower limit of 0.9 p.u are also imposed on voltage magnitudes of load buses. Bus 6 is considered the slack bus of the system with voltage 1.04 p.u while voltage magnitudes of voltage controlled buses 1 and 3 are assigned with the values 1.02 and 1.04 p.u, respectively. In addition, \(w_{mk} = 0.9\) is to avoid overload of the system lines. The proposed technique is applied to the system in two cases. The method is applied in static mode of planning with an installation cost of $240,000/km for...
any new right-of-way, with a single line between its terminal buses, and $150,000/km for any additional line in an existing and/or future right-of-way. An annual operation and maintenance cost of $800/km is assumed. The cost of energy losses is also supposed to be $0.1/kW/year. The optimal plan has been obtained with the configuration shown in Fig. 2. Both active and reactive power flow, obtained from the model output are also shown in Table 1.

Comparing the results using this BBO based model to those using GA technique in (Youssef, 2000), the installation, operation and maintenance, and losses costs are lower.

To study the impact of the presence of the DG as a new option to supply the loads of the system, considering the input data such as percentage of contribution of DG in supplying total load demand (760 MW) and the predetermined buses that can accept the installation of DG units at (for this system, buses 2 and 4), the problem is solved in two cases:

**Case1:** There will be a 10% share of installed DG units on the load buses (10% of total load demand = 76 MW and installed at bus 2). It is assumed that DG units are nondispatchable and their power is only consumed locally, therefore they can be modelled as negative loads. The optimal plan for this case has been achieved with the configuration shown in Fig. 3. For the assumed data, an installation cost of $39.840.000 is obtained. Furthermore, an operation and maintenance cost of $1.275.982 and energy losses cost of $15.650 are obtained.

**Case2:** There will be a 30% share of installed DG units on the load buses (30% of total load demand=228 MW and installed at bus 4). DG units are assumed to be dispatchable and traded through the spot market. The optimal plan for this case has been obtained with the configuration shown in Fig. 4. For the assumed data, an installation cost of $21.120.000 is obtained. Also, an operation and maintenance cost of $17.720 are also obtained. An interest rate of 12% and an inflation rate of 4% are used in the study. An installation time period of 1 year is considered for any new facility. Both variable and losses costs are computed according to equations used in (Youssef and Hackam, 1989).

An installation cost of $47,040,000 is obtained assuming that the new facilities are to be added at the time of planning. For an assumed 10 years operating time period for the system, an operation and maintenance cost of $1,477,452 and energy losses cost of $17.720 are also obtained. An interest rate of 12% and an inflation rate of 4% are used in the study. An installation time period of 1 year is considered for any new facility. Both variable and losses costs are computed according to equations used in (Youssef and Hackam, 1989).

Comparing the results using this BBO based model to those using GA technique in (Youssef, 2000), the installation, operation and maintenance, and losses costs are lower.

To study the impact of the presence of the DG as a new option to supply the loads of the system, considering the input data such as percentage of contribution of DG in supplying total load demand (760 MW) and the predetermined buses that can accept the installation of DG units at (for this system, buses 2 and 4), the problem is solved in two cases:

**Case1:** There will be a 10% share of installed DG units on the load buses (10% of total load demand = 76 MW and installed at bus 2). It is assumed that DG units are nondispatchable and their power is only consumed locally, therefore they can be modelled as negative loads. The optimal plan for this case has been achieved with the configuration shown in Fig. 3. For the assumed data, an installation cost of $39.840.000 is obtained. Furthermore, an operation and maintenance cost of $1.275.982 and energy losses cost of $15.650 are obtained.

**Case2:** There will be a 30% share of installed DG units on the load buses (30% of total load demand=228 MW and installed at bus 4). DG units are assumed to be dispatchable and traded through the spot market. The optimal plan for this case has been obtained with the configuration shown in Fig. 4. For the assumed data, an installation cost of $21.120.000 is obtained. Also, an operation and maintenance cost of $17.720 are also obtained. An interest rate of 12% and an inflation rate of 4% are used in the study. An installation time period of 1 year is considered for any new facility. Both variable and losses costs are computed according to equations used in (Youssef and Hackam, 1989).

Comparing the results using this BBO based model to those using GA technique in (Youssef, 2000), the installation, operation and maintenance, and losses costs are lower.
According to study on the above two cases, it is observed that a 30\% share, which provides a dispatchable power, more significantly reduces the future network expansion costs than the 10\% share of nondispatchable power.

**Testing the IEEE Modified 14-Bus Test System**

The IEEE modified 14-BUS test system is widely used in literature (Xu and Dong, 2004; Eliassi et al., 2009). The system has 5 existing generator buses 1, 2, 3, 6 and 8 with generation capacities of 150, 150, 100, 100, and 100 MW, respectively, along with local demands of 0, 21.7, 21.74, 11.2 and 0 MW, respectively. The system also has load buses 4, 5, 7, 9, 10, 11, 12, 13, and 14 with active power demand 47.8, 7.6, 21.69, 29.5, 9, 3.5, 6.1, 13.5, and 14.9 MW, individually, and assumed reactive power demand of 17.39, 1.6, 5.21, 16.6, 5.8, 1.8, 1.6, 5.8 and 5 MVAR, respectively. The system in its initial configuration has the 20 single 3-phase lines 1-2, 1-5, 2-3, 2-4, 2-5, 3-4, 4-5, 4-7, 4-9, 5-6, 6-11, 6-12, 6-13, 7-8, 7-9, 9-10, 9-14, 10-11, 12-13 and 13-14, shown in Fig. 5. A future increase in demand by a factor of 2.5 is expected and accordingly, the total future demand will be 520.575 MW. In future, seven additional lines between buses 2-4, 3-4, 4-9, 6-11, 6-13, 7-8, and 7-9 are allowed.

To check the capability of the model to handle this system using the previous values for the security constraints, Bus 2 is considered the slack bus of the system with voltage 1.045<0° p.u, while voltage magnitudes of voltage controlled buses 1, 3, 6, and 8 are assigned with the values 1.06, 1.01, 1.07, and 1.09 p.u, respectively. The optimal plan has been obtained with the configuration shown in Fig. 6. For the assumed data, an installation cost of $30.067.200 is obtained. Likewise, an operation and maintenance cost of $3.858.703 and energy losses cost of $15.008 are obtained.

To study the impact of the presence of distributed DG, the predetermined buses that can accept the installation of DG units are buses 4, 7, 9, 13, and 14; and the problem is solved in three cases:

**Case1**: There will be a 5\% share of installed DG units on the load buses (5\% of total load demand=26.02875 MW and installed at bus 9), in addition, DG units are assumed nondispatchable and modelled as negative loads. The optimal plan for this case has been obtained with the configuration shown in Fig. 7. For the assumed data, an installation cost of $22.884.000 is obtained. Meanwhile, an operation and maintenance cost of $3.845.204 and energy losses cost of $13.559 are obtained.

**Case2**: There will be a 10\% share of installed DG units on the load buses (10\% of total load demand=52.0575 MW and installed at bus 4), as well DG units are assumed nondispatchable and modelled as negative loads. The optimal plan for this case has been obtained with the configuration shown in Fig. 8. For the assumed data, an installation cost of $27.189.600 is obtained for this case. Also, an operation and maintenance cost of $3.797.388 and energy losses cost
of $13.828 are obtained.

Case 3: There will be a 15% share of installed DG units on the load buses (15% of total load demand = 78.08 MW and installed at buses 7 (10 MW), 13 (18.08 MW), and 14 (50 MW)). The excess power at bus 14 will be dispatchable. The optimal plan for this case has been obtained with the configuration shown in Fig. 9. For the assumed data, an installation cost of $27.364.800 is obtained for this case. Additionally, an operation and maintenance cost of $3.828.751 and energy losses cost of $7.759 are obtained.

Based on study on the above three cases, it is observed that a 10% share of nondispatchable power and 15% share of dispatchable power reduce future network expansion costs. However, the cost reductions in installation cost are much lower than that in the 5% nondispatchable power case.

These results are reasonable because when the DG units share is larger or involved in the dispatch process, their electricity will be traded through the transmission network, which potentially can cause network congestion and provide incentives for network expansion. However, compared with the base case, larger penetration level of DG can still reduce the transmission investments to some extent.

Generally, studying the above optimal solutions reveals the following:

- None of the system lines has ever been overloaded;
- None of the system security constraints has been violated at any time;
- Some of the existing lines have been removed in the optimal plans, which is an advantage for this BBO based model since it allows the removal of any of the existing facilities if this helps in achieving the optimal plan;
- Computation time needed to get optimum solution using BBO model is less.

**Conclusions**

A new BBO long range transmission planning model has been developed and introduced in this paper with study on the DG impacts on the planning. This model, capable to handle both static and dynamic modes of planning, ensures the feasibility of the optimal plan obtained due to the application of the accurate AC load flow as well as the system operational and security constraints easily.

The model allows the removal of any existing facilities if it is not needed and can account for their assets value in the objective function. The model cost
function accurately includes the present worth value of all system installation, operation and maintenance, and energy losses costs with the consideration of their change with time according to inflation and interest rates. The results obtained from the proposed approach are reasonable compared to those reported in the recent literature.

It has been observed that the BBO has the ability to converge to a better quality solution and possesses good convergence characteristics and robustness compared to other techniques. In addition, the effect of DG as a new option to supply the loads of the system, on the TEP costs has been modelled mathematically and evaluated. The results showed that the use of DG units in the TEP provides more economical plans.

REFERENCES


